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Abstract
The quantum Hall effects in all even dimensions are uniformly constructed.
Contrary to some recent accounts in the literature, the existence of quantum Hall
effects (QHE) does not crucially depend on the existence of division algebras.
For QHE on flat space of even dimensions, both the Hamiltonians and the
ground-state wavefunctions for a single particle are explicitly described. This
explicit description immediately tells us that QHE on a higher even-dimensional
flat space shares common features such as incompressibility with QHE on a
plane.

PACS numbers: 73.43.−f, 02.20.−a, 02.40.−k, 03.65.−w

1. Introduction

Recently there has been a flurry on a generalization of the quantum Hall effect (QHE) to
four-dimensional flat space [1–10], inspired by a paper [11] by Zhang and Hu. In view of
its significance to condensed matter physics and to fundamental physics (see the conclusion
and the introduction in [11]), it is worth the effort to make a closer examination of this
generalization of the QHE.

In their search for QHE on four-space (i.e., R
4), Zhang and Hu follow Haldane’s approach

to the QHE problem in [12]. There are two steps in this approach: (1) study the quantum
mechanics problem of a single charged particle under the influence of a natural background
magnetic field of strength I on the sphere of radius R and (2) map the sphere to the flat
Euclidean space by standard stereographical mapping and then take the thermodynamic limit
as both I and R go to infinity while keeping I/R2 constant to recover QHE on the plane.
Put it differently, QHE on the two-sphere devised by Haldane is just a family of spherical
approximations to QHE on two-space (i.e., R2), and the strategy adopted in [11] is to generalize
the spherical models of Haldane to dimension four (using an earlier work of Yang [13]) and
then take the thermodynamic limit to obtain QHE on four-space.
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As a matter of fact, the natural generalization of QHE on the two-sphere goes beyond
dimension four. This observation was also independently made (but not carried out) by
Fabinger in [9] from the point of view of fuzzy spheres [14].

It is well known that, to understand the QHE, a key step is to understand the Hamiltonian
and the ground-state wavefunctions for a single particle on flat space. However, to our best
understanding of the references cited above, this very important question for QHE on four-
space has not been explicitly addressed so far. Our answer to this question for QHE on
higher dimensional flat spaces turns out to be rather simple mathematically. This simplicity
immediately tells us that QHE on higher dimensional flat space shares common features such
as incompressibility with QHE on two-space.

2. QHE on even-dimensional spheres

Here we formulate the quantum mechanics model1 for the QHE problem on even-spheres in
clean geometric language. The approach in [11], where the ground-state wavefunctions are
given first and the Hamiltonian is derived later, while it works in dimension four, does not seem
to work in higher even dimensions. Our approach starts with the Hamiltonian and is more
straightforward and works in any even dimension. However, the discussion here may not be
really new in a broad sense, and it could have been known a long time ago to mathematicians
in the context of representation theory of compact Lie groups. In any case, similar discussions
in more general settings appeared (partially or fully) in the mathematical physics literature
repeatedly in the past [16–18].

Following [11], a point Xi on S2n(R) (the 2n sphere centred at the origin with radius R)
can be described by dimensionless vector coordinates xi = Xi/R, with i = 1, 2, . . . , 2n + 1,
which satisfy x2

i = 1. Now, S2n ≡ S2n(1) is the homogeneous space spin(2n + 1)/spin(2n),
and the principal bundle

spin(2n) → spin(2n + 1) → S2n (1)

has a canonical connection

A = Prso(2n)(g
−1dg) (2)

where g−1dg is the Cartan–Maurer form on spin(2n + 1) and Prso(2n) is the orthogonal
projection onto the Lie algebra of spin(2n). Let � be the fundamental spin representation
of spin(2n + 1), then � = �+ ⊕ �− as representations of spin(2n), where �± are the
positive/negative spin representations of spin(2n). The highest weight state of �± is∣∣ 1

2 · · · 1
2︸ ︷︷ ︸

n−1

±1
2

〉
. Let I be a positive half integer, �+

I be the irreducible representation of

spin(2n) with highest weight state
∣∣ I · · · I︸ ︷︷ ︸

n

〉
. (In general �+

I is an irreducible component

of the 2I -fold symmetric tensor product of �+.) Form the complex vector bundle ξI :
spin(2n + 1) ×spin(2n) �+

I → S2n, then ξI has an induced canonical spin(2n)-connection AI .

1 Before going into the mathematical details, I would like to point out that, physically, it is the quantum mechanics
of a charged particle in a 2n-dimensional sphere under the influence of a canonical background spin(2n)-gauge field.
For further explanation, consult appendix A.
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The quantum mechanics problem is the study of a charged particle in the presence of
background magnetic potential AI , so the Hamiltonian2 is

Ĥ = h̄2

2MR2
d
†
AI

dAI
(3)

where dAI
is the covariant derivative: �(ξI ) → �(ξI ⊗ T ∗S2n), and d

†
AI

is the formal adjoint
of dAI

.
To compute the spectrum of Ĥ in equation (3), we note that

d
†
AI

dAI
= c2

(
spin(2n + 1)) − c2(spin(2n),�+

I

)
(4)

where c2(spin(2n + 1)) is the quadratic Casimir operator of spin(2n + 1) and c2
(
spin(2n),�+

I

)
is the value of the quadratic Casimir operator of spin(2n) on �+

I . Therefore we have

Ĥ = h̄2

2MR2

[
c2(spin(2n + 1)) − c2

(
spin(2n),�+

I

)]
. (5)

Note that equations (3) and (5) have appeared in [16–18] in a slightly different form (see
appendix A for more details).

The Hilbert space of this quantum system is the space of square integrable sections of ξI

and it decomposes into the direct sum of the eigenspaces of Ĥ . These energy eigenspaces,
indexed by integer q � 0, are all irreducible representation spaces of spin(2n + 1). The
qth energy eigenspace HI (q) is labelled by its highest weight state

∣∣(q + I ) I · · · I︸ ︷︷ ︸
n−1

〉
, and the

corresponding eigenvalue is E(q) = h̄2

2MR2

[
2I

(
q + n

2

)
+ q(q + 2n − 1)

]
. The ground state,

which is the lowest spin(2n + 1) level for a given I, is obtained by setting q = 0, and is
d0 ≡ ∏

1�i�j�n

(
1+ 2I

2n+1−i−j

)
-fold degenerate. (All these are standard results in mathematics

and can be found in a textbook on group representations, for example [19].) Therefore, I plays
the role of magnetic flux, while q plays the role of the Landau level index. States with q > 0
are separated from the ground state by a finite energy gap. Note that in the limit I → ∞ and
R → ∞ while keeping l0 ≡ R√

2I
and q constant,

E(q) → h̄2

2Ml2
0

(
q +

n

2

)
(6)

and the single particle energy spacing is finite. This can also be seen from the thermodynamic
limit of Ĥ below.

3. QHE on even-dimensional flat spaces

Here we shall see that Ĥ in equation (3) is rather simple in the thermodynamic limit. As a
first step, we shall find the expression for Ĥ on S2n\{S} (i.e., the sphere with the south pole S
removed). To do this, we need to fix a gauge on S2n\{S}, i.e., a smooth section φ on S2n\{S}
of the principal bundle in (1). We prefer to choose an SO(2n)-equivariant gauge, for example,
we may take

Landau gauge: φ(�y) =

I − 2�y�yT

1+y2
2�y

1+y2

− 2�yT

1+y2
1−y2

1+y2


 (7)

2 Here is a remark for QHE on a four-sphere. Note that spin(4) = SU(2) × SU(2), so the background gauge field
splits into two components. However, since the particle is neutral with respect to the second component gauge field,
physically, the particle only sees SU(2)—-a component of spin(4). So the effective principal bundle used here is just
a SU(2) bundle which can be seen to be precisely the Hopf bundle used in [11]. (These observations have already
appeared in a series of papers by Y S Wu and his collaborators which were published in some Chinese journals in the
1970s.) The advantage of our construction is that the spin(5) (not SO(5)) symmetry of the system is manifest from
the very beginning. Compare with [11].
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where �y is the standard stereographical map S2n\{S} → R
2n, viewed as a coordinate map.

Then the connection form on S2n\{S} under the Landau gauge is

φ∗(A) = 2(�yd�yT − d�y�yT ) + O(|�y|3) (8)

where O(|�y|3) is a term whose coefficient in each dyi is of order |�y|3 as �y → �0.
For the purpose of taking limits, it is convenient to have another representation of SO(2n)

[19]: a complex 2n × 2n matrix X is in SO(2n) if and only if it is anti-Hermitian and
JXT J +X = 0, where J = (0 In

In 0

)
with In being the n×n identity matrix. In this representation,

the natural connection form in equation (8) becomes

B =
(

zdz† − dzz† zdzT − dzzT

zdzT − dzzT zdz† − dzz†

)
+ O(|z|3) (9)

where z =




z1

...

zn


 with zµ = yµ +

√−1yn+µ for 1 � µ � n and a bar means complex

conjugation. Then the Hamiltonian operator (in the Landau gauge) is

Ĥ = − 1

2MR2

1√
h

(∂j + Bj)[h
jk

√
h(∂k + Bk)] (10)

where h is the following Riemannian metric on C
n = R

2n:

hij (�y) = c

1 + �y2
δij (11)

where c is a constant which can/will be set to be 1.
To find the thermodynamic limit of the Hamiltonian in equation (10), we write

B = Bµdzµ + Bµ̄dz̄µ, replace z by z/
√

2I , �y by �y/
√

2I and R2 by 2I and observe that
as I → ∞,

Bµ/
√

2I → − 1
2 z̄µ Bµ̄/

√
2I → 1

2zµ (12)

as operators, and

hij → δij (13)

therefore,

Ĥ → Ĥ∞ =
∑

1�µ�n

− 1

M
(∇µ∇µ̄ + ∇µ̄∇µ) (14)

where ∇µ = ∂µ − 1
2zµ and ∇µ̄ = ∂µ̄ + 1

2zµ. In other words, the Hamiltonian for a single
charged particle in QHE on 2n space is

Ĥ∞ =
∑

1�µ�n

(
−∇µ∇µ̄ +

1

2

)
h̄ωc. (15)

Roughly speaking, equation (15) says that Ĥ∞ is just the sum of n copies of the Hamiltonian
for a single particle in QHE on two-space.

Main results3 for QHE on even-dimensional spaces. Let ĥ be the Hamiltonian of a single
particle in QHE on two-space in the Landau gauge, V be the Bargmann–Fock space [15] of
3 Before taking the limit, the physics is about a charged particle on a sphere under the influence of a natural
background gauge field. However, the limit does not have this kind of interpretation any longer. In the semiclassical
picture, a 2n-dimensional QHE droplet is a finite ball in the configuration space (not R

2n) whose Landau levels up to
the boundary are all filled. This is clear from our explicit description of the ground-state wavefunctions.
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holomorphic functions on C. Then the Hamiltonian of a single particle in QHE on four-space
(in the Landau gauge) is

Ĥ∞ = ĥ ⊗ I ⊗ I + I ⊗ ĥ ⊗ I (16)

and it acts on the Hilbert space L2(R2) ⊗ L2(R2) ⊗ V (here I is the identity operator). The
spectrum of this Hamiltonian is

E(q) = (q + 1)h̄ωc (17)

where q = 0, 1, 2, . . . and the Hilbert space of ground states is the Bargmann–Fock space of
holomorphic functions on C

3 with orthonormal basis (when we take the magnetic length as 1)

ψk(z) = z[k]

√
π3k!

exp

(
−1

2
|z|2

)
(18)

where k ≡ (k1, k2, k3) ∈ Z
3
+, |z|2 ≡ |z1|2 + |z2|2 + |z3|2, z[k] ≡ z

k1
1 z

k2
2 z

k3
3 and k! ≡ k1!k2!k3!.

A similar conclusion also holds for QHE on 2n space with n > 2. In particular, the
spectrum of the Hamiltonian is

E(q) =
(
q +

n

2

)
h̄ωc (19)

where q = 0, 1, 2, . . . and the Hilbert space of ground states is the Bargmann–Fock space of
holomorphic functions on C

n(n+1)

2 , the configuration space.
One may wonder whether the spectrum and the ground-state wavefunctions for a single

particle in QHE on 2n space would be the same if they are obtained as the thermodynamic
limit of their counterparts in QHE on 2n spheres. The answer is yes. The spectrum is seen to
be the same by comparing equation (19) with equation (6), and the ground-state wavefunctions
can be seen to be the same by doing a little further work (see appendix B).

4. Conclusion

The recent generalization of the QHE to four-space has been viewed as a significant attempt to
answer fundamental questions in physics [11], and it has attracted considerable attention from
physicists. In this paper, a clean geometric construction for this generalization is presented;
and it actually yields a sequence of models of the QHE type:

QHE on 2 space, Zhang–Hu model, QHE on 6 space, QHE on 8 space4, . . .

Contrary to the accounts in [1, 11], the existence of quantum Hall effects does not crucially
depend on the existence of division algebras.

Moreover, the Hamiltonian and the ground-state wavefunctions for a single particle on flat
space are derived and explicitly described. The simplicity of this description immediately tells
us that QHE on higher dimensional flat space shares common features such as incompressibility
with QHE on two-space. We hope the simplicity of this description can also solve some
mysteries surrounding QHE on higher dimensional spaces and thus facilitate the search for
the grand unification based on QHE on four-space [11].

4 In dimension 8k, if we use a real chiral spinor in our construction, the configuration space will be smaller, its
dimension will be reduced from 8k + 4k(4k − 1) = 4k(4k + 1) to 8k + 4k(4k − 1)

2 = 2k(4k + 3), i.e., from 20 to 14
when k = 1. Compare with [1].
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Appendix A. Quantum mechanics of a charged particle on homogeneous spaces

The quantum mechanics of a charged particle on homogeneous spaces has been discussed in
many recent papers in mathematical physics [17, 18] from more algebraic or computational
points of view. Here we give a short presentation of it in geometric language. No originality
is claimed because the construction is tautological and obvious to a modern geometer and has
already appeared explicitly in [16] (at least) in the special case.

Appendix A.1. Generality

Let (X, h) be a Riemannian manifold with Riemannian metric h. Consider the quantum
mechanics of a neutral particle of mass M freely moving in X; it is well known that the
Hamiltonian operator is

Ĥ = h̄2

2M
� (A1)

where � is the semipositive definite Laplace operator. (In flat Euclidean space, � = −∑
i ∂

2
i .)

The Hilbert space of this quantum mechanics problem is the space of square integrable
complex-valued functions on X. Following Hodge, we write

� = d†d (A2)

where d is the exterior differential operator on complex-valued functions and d† is its formal
adjoint. In a local coordinate system, we have

� = − 1√
h

∂i(h
ij
√

h∂j ) (A3)

where h = det(hij ).
Next we assume the particle is charged, and there is a background gauge field.

Geometrically, a background gauge field is just a connection A on a certain Hermitian vector
bundle ξ on X. A connection A is equivalent to a linear operator

dA : �(ξ) → �(T ∗X ⊗ ξ) (A4)

satisfying the Leibnitz rule: dA(f s) = df ⊗ s + f dAs, where s is a section of ξ and f is a
function on X. The Riemannian metric on X together with the Hermitian metric on ξ makes
possible the definition of the formal adjoint of dA (denoted by d

†
A). The obvious generalization

of � in equation (2) is

�A = d
†
AdA. (A5)

In a local coordinate system, with a choice of a gauge, we have

�A = − 1√
h

(∂j + Aj)(h
jk

√
h(∂k + Ak)) (A6)
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where Aidxi is the Lie algebra-valued one-form representing the connection A in the fixed
gauge.

The obvious generalization of equation (1) is

Ĥ = h̄2

2M
�A. (A7)

For a general (X, h) and a general (ξ, A), the quantum mechanics problem is difficult to
solve. However, for homogeneous space X and the associated canonical (ξ, A), the quantum
mechanics problem is exactly soluble.

Appendix A.2. Quantum mechanics on homogeneous space

Let G be a reductive Lie group, and H be a compact Lie subgroup. The Cartan–Killing
metric on G gives rise to a canonical Riemannian metric on the homogeneous space G/H. The
principal H bundle

H → G → G/H (A8)

has a canonical connection:

A(g) = Prh(g−1dg) (A9)

where Prh is the orthogonal projection onto h (the Lie algebra of H) using the Cartan–Killing
metric on g (the Lie algebra of G).

Let V be an irreducible unitary representation of H, forming the vector bundle

ξV : G ×H V → G/H (A10)

The quantum mechanics problem discussed in a previous subsection, when applied in this
setting, is completely soluble. It turns out that the problem can be fully described in terms of
the representation theory of Lie groups: the Hilbert space, being the square integrable sections
of ξV , is called the induced representation of G (induced from V), and the Hamiltonian is

Ĥ = h̄2

2M
(c2(G) − c2(H, V)) (A11)

where c2(G) is the quadratic Casimir operator of G and c2(H, V) is the value of the quadratic
Casimir operator of H on V . Here we have used the equation

d
†
AdA = c2(G) − c2(H, V). (A12)

The proof of this equation is a simple exercise. The key observation is that both sides commute
with the induced left action by G on a space of the H-equivariant map from G to V. (Note that
a section of ξV is just an H-equivariant map from G to V.) Based on this observation, we just
need to check that d∗

AdAφ = (c2(G) − c2(H, V))φ at the identity e of G. Next we choose an
orthonormal basis {Xi} at TeG, such that the first p of the basis vectors forms an orthonormal
basis for the orthogonal complement P of TeH in TeG, so P ∼= R

p. Locally around eH, G/H
is diffeomorphic to P under the exponential map, so it is also diffeomorphic to R

p, and
this defines a local coordinate map. The next observation is that these local coordinates are
geodesic normal coordinates at eH. Then, using the definition of covariant derivatives, we
have d∗

AdAφ|e = ∑p

i=1 XiXiφ|e = c2(G)φ|e −c2(H)φ|e. The proof is completed by observing
that c2(H)φ|e = c2(H) · φ(e) (here · is the action of Uh on V).

Remark that the Hamiltonian discussed in [17, 18] is

Ĥ ′ = c2(G) (A13)

and the one we use here appears explicitly in [16] in the case G = SU(2) and H = U(1).
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Appendix B. Concrete description of wavefunctions of a single particle in QHE on even
spheres

The main purpose here is to describe the wavefunctions of a single particle in QHE on even
spheres at a fixed energy level as certain polynomials on the decompactified configuration
space of QHE on even spheres.

For this purpose, we choose the Landau gauge on S2n\{S} and identify S2n\{S} with C
n

under the standard stereographical projection map. Also, for each k � 1 we let Zk denote
the space of complex k × k matrices that are skew-symmetric about the second diagonal, and
identify C

k × Zk with Zk+1 via

(z, zk) → Z ≡
(

z zk

0 −z̃

)
. (B1)

Here, for z = (z1, . . . , zk)
T (a column vector), we use z̃ to denote (zk, . . . , z1) (a row vector).

Note that �+
I has a concrete realization as the space of certain polynomials on Zn [19].

Then a smooth section of ξI , being uniquely specified by a smooth map from C
n to �+

I , can
be realized as a smooth map from C

n × Zn to C or a smooth map from Zn+1 to C.
Therefore, HI (q) can be viewed as the space of certain smooth maps from Zn+1 to C in

a natural way. On the other hand, HI (q) ∼= �I(q)—-the irreducible representation space of
spin(2n + 1) labelled by the highest weight state

∣∣(q + I ) I · · · I︸ ︷︷ ︸
n−1

〉
. Since �I(q) has a concrete

realization as the space of certain polynomials on Zn+1 [19], the description of HI (q) would
be complete if we know the natural identification HI (q) ∼= �I(q). For this purpose, we define
a self-diffeomorphism φ of Zn+1: for Z = (

z zn

0 −z̃

)
, we have

φ(Z) =
(

z (In + zz†)zn(In + z̃†z̃)

0 −z̃

)
(B2)

where In is the n × n identity matrix, and † means Hermitian conjugation. We are now ready
to state our conclusion: the one-to-one correspondence HI (q) � ψf ↔ f ∈ �I(q) is

ψf (Z) = f (φ(Z)). (B3)

Moreover, the integration measure used in defining the inner product on the space of
wavefunctions is

dµI = NI (n) dZ

(1 + |z|2)2I+2n
∣∣det

(
In + znz

†
n

)∣∣I+(n−1)
(B4)

where NI (n) is the normalization constant chosen such that
∫
Zn+1

dµI = 1.

Upon replacing Z by Z/
√

2I and taking the limit I → ∞, we have

dµI → dµ∞ = π− n(n+1)

2 e−|Z|2 dZ (B5)

i.e., the limit of the integration measure is the integration measure of Bargmann–Fock space
[15]. It is then easy to see that as I → ∞,�I (0) approaches a subspace of the Bargmann–Fock
space of holomorphic functions on C

n(n+1)/2, and this subspace is the whole Bargmann–Fock
space in the case n = 1 and n = 2. An induction argument actually shows that this subspace
is the whole Bargmann–Fock space also in the general case.
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